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Synthesis of 2-substituted endo-hymenialdisine derivatives
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Abstract—The first synthesis of 2-substituted endo-hymenialdisine derivatives 1–4 is described started with 2-substituted pyrroles
and 5-substituted pyrrolo-2-carboxylic acids.
� 2007 Published by Elsevier Ltd.
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Figure 1. Chemical structure and kinase inhibition activity of hymeni-
aldisine analogues.
The marine natural product hymenialdisine was origi-
nally isolated from the sponges Axinella verrucosa and
Acantella aurantiaca.1 Hymenialdisine has revealed low
nanomolar inhibition activities against a panel of
kinases such as GSK-3b, members of the CDK family,
Erk1, Erk2, CK1, and MEK.2,3 The chemical structure
and kinase inhibition activity of four known hymeni-
aldisine analogues are presented in Figure 1. Comparing
the inhibition activities among these analogues, the inhi-
bition activity of hymenialdisine is about 80-fold higher
than that of the debromo one against kinase MEK-1.
The inhibition activity of diacetyl hymenialdisine is
about 4-fold higher against kinase GSK-3b and is about
2-fold higher against kinase CDK5 than that of de-
bromo diacetyl hymenialdisine. In the X-ray structure
of hymenialdisine–CDK2 complex,2 some level of
hydrophobic interaction between the bromine atom
and the hydrophobic backbone of CDK2 is observed.
Therefore, the bulky and lipophilic effects of the bromo
atom of hymenialdisine could play a key role in gaining
the high inhibition potency.

The chemical structure modification of natural product
possessing superior bioactivity is considered as the most
efficient way to find drug candidates, which have high
potency and selectivity. Lack of inhibition selectivity is
the main characteristics and disadvantage of hymeni-
aldisine. In view of the inhibition potency gained by
the bromo substituent, the chemical modification of
hymenialdisine is anticipated to be focused on replacing
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the bromo atom with other lipophilic substituents at the
a-position of the pyrrolyl ring. In this Letter, we report the
first synthesis of four endo-hymenialdisine derivatives
1–4 by substituting the bromo atom with methyl, benzyl,
phenyl, and tert-butyl groups, respectively (Fig. 2).

The synthesis of hymenialdisine derivatives 1–4 was
commenced with 2-substituted pyrroles4 and 5-substi-
tuted pyrrolo-2-carboxylic acids.5 As shown in Scheme
1, three methods were used to link 2-substituted pyrrolyl
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Scheme 1. Synthesis of 5-subtituted pyrrolo-2-carboxamides.
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Scheme 2. Syntheses of 2-substituted endo-hymenialdisine derivatives
1–4.
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Figure 2. 2-Substituted endo-hymenialdisine derivatives.
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moiety with b-alanine. When 2-methylpyrrole or 2-benz-
ylpyrrole reacted with trichloroacetyl chloride in the
presence of K2CO3 in Et2O, 5-substituted 2-trichloro-
acetylpyrroles 5 and 6 were obtained in almost quantita-
tive yields. Without purification, the crude compounds 5
and 6 were used directly to condense with b-alanine
methyl ester hydrochloride 7 in MeCN by using Et3N
as a base to produce compounds 8 and 9 with yields
of 61% and 45%, respectively. Compound 11 was ob-
tained in 67% yield by transferring 5-phenylpyrrolo-2-
carboxylic acid into its acyl chloride 10 first, followed
by condensation with 7. However, 5-tert-butylpyrrolo-
2-carboxylic acid 12 failed to produce compound 13 in
the same synthetic approach for the preparation of 11.
As an alternate approach, compound 16 with a meth-
oxycarbonyl protecting group on the amide nitrogen
was prepared with 80% yield by treatment of 12 with
7, methyl chloroformate, and Et3N in THF at room
temperature for 8 h. The conversion of 12 into amide
16 was most likely to proceed through the reaction of
anhydride 14 with in situ formed N-methoxycarbonyl
b-alanine methyl ester 15.

At this stage, preparation of the 2-substituted pyr-
rolo[2,3-c]azepin-4,8-dione intermediates 21–24 from
acids 17–20 became the main concern (Scheme 2).
5-Subtituted pyrrolo-2-carboxamides 8, 9, 11, and 16
were first converted to the corresponding acids 17–20
by hydrolysis with 1 N HCl. After intra-molecular cycli-
zation by using PPA and P2O5 under nitrogen at
120 �C,6 the key intermediates 21–24 were obtained with
yields of 35%, 76%, 55%, and 45%, respectively. The
guanidine moiety was then successfully installed on the
azepine ring by utilizing the recent reported one-pot
three-step methodology.6b Thus, condensations of 21–
24 with 1-benzoyl-2-methylsulfanyl-1,5-dihydroimi-
daol-4-one 24 in the presence of TiCl4 and pyridine, fol-
lowed by two-step ammonia hydrolysis (first with
diluted ammonia solution in dioxane for 0.5 h, subse-
quently with saturated ammonia solution in MeOH
for 4 h) provided 2-substituted endo-hymenialdisine
derivatives 1–4 in low to moderate yields without isola-
tion of exo-isomers 26–29. Attempts of isomerization of
endo-hymenialdisine derivatives 1–4 into the corre-
sponding exo-isomers 26–29 were unsuccessful by irradi-
ation of compounds 1–4 with microwave in aqueous
ammonia according to the literature method for the
isomerization of endo-debromohymenialdisine.6b Fail-
ure to shift 5,6-double bond to 5,11-double is due to
the existence of 2-substituents at the pyrrolyl ring, which
precludes the aromatic isomerization of the conjugated
system under the same reaction condition. In other
words, the aromatic isomerization of endo-hymenialdi-
sines 1–4 probably requires higher energy compared to
that of endo-debromohymenialdisine.

The geometric position of 5,6-double bond was unam-
biguously confirmed by the 1H NMR spectra.7 In the
1H NMR (400 MHz, DMSO-d6 + D2O) of the synthe-
sized endo-isomers 1–14, the singlet attributed to C11
methyne proton appeared at 4.60 ppm for 1, 4.65 ppm
for 2, 4.71 ppm for 3, and 4.66 ppm for 4. The triplet
attributed to C6 olefinic proton appeared at 5.77 ppm
for 1, 5.80 ppm for 2, 5.87 ppm for 3, and 5.83 ppm
for 4.
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In summary, an efficient synthesis of 2-substituted endo-
hymenialdisine derivatives 1–4 has been achieved, which
is the first report of endo-hymenialdisine derivatives with
a variety of substituents at the a-position of the pyrrolyl
ring. The synthesized compounds have stable chemical
structures, all of which will be subjected to bioactivity
screening as promising kinase inhibitors.
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